Effects of finite momentum width on the reversal dynamics in a BEC based atom optics δ-kicked rotor

Author:

Mangaonkar JayORCID,Vishwakarma Chetan,Maurya S Sagar,Sarkar Sumit,MacLennan Jamie L,Dutta Pranab,Rapol Umakant DORCID

Abstract

Abstract This experimental work demonstrates the importance of finite-width effects in the evolution of a quantum system, where the results deviate considerably from the plane wave approximation even for an initial state with a very narrow momentum width i.e a Bose–Einstein condensate. The system under consideration is an atom optics δ-kicked rotor for which a fidelity based measurement has been proposed to possess a rapid scaling of sensitivity (N −3) with pulse number N. Although attractive, we demonstrate that this scaling does not hold in the regime where the momentum selectivity of the pulse sequence becomes significantly smaller than the momentum width of the initial state. Additionally, the momentum distribution post kicking shows a lattice-phase dependent intra-order and inter-order asymmetry in the diffracted orders. The intra-order asymmetry, in which no net momentum current is present, is a previously unreported type of effect. For a two pulse case, the inter-order asymmetry signal is found to be about five times more sensitive to the resonance than the initial state fidelity. Both of these asymmetries provide a zero-crossing signal which can be used to diagnose any undesirable lattice phase offset at resonant and off-resonant pulse periods.

Funder

CSIR

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3