Photodissociation dynamics of methyl iodide across the A-band probed by femtosecond extreme ultraviolet photoelectron spectroscopy

Author:

Downes-Ward BrionyORCID,Warne Emily MORCID,Woodhouse Joanne,Parkes Michael AORCID,Springate Emma,Pearcy Philip A J,Zhang Yu,Karras Gabriel,Wyatt Adam SORCID,Chapman Richard TORCID,Minns Russell SORCID

Abstract

Abstract The dissociation dynamics of CH3I at three UV pump wavelengths (279 nm, 254 nm, 243 nm) are measured using an extreme ultraviolet probe in a time-resolved photoelectron spectroscopy experiment. The results are compared with previously published data at a pump wavelength of 269 nm, [2020, Phys. Chem. Chem. Phys., 22, 25695], with complementary photoelectron spectroscopy experiments performed using a multiphoton ionization (MPI) probe [2019, Phys. Chem. Chem. Phys., 21, 11142] and with the recent action spectroscopy measurements of Murillo-Sánchez et al [2020, J. Chem. Phys., 152, 014304]. The measurements at 279 nm and 243 nm show signals that are consistent with rapid dissociation along the C–I bond occurring on timescales that are consistent with previous measurements. The measurements at 254 nm show a significantly longer excited state lifetime with a secondary feature appearing after 100 fs which is indicative of more complex dynamics in the excited state. The time-dependence of the changes are consistent with the previously measured MPI photoelectron spectroscopy measurements of Warne et al, [2019, Phys. Chem. Chem. Phys., 21, 11142]. The consistency of the signal appearance across ionization processes suggests that the extended observation time at 254 nm is not an artefact of the previously used MPI process but is caused by more complex dynamics on the excited state potential. Whether this is caused by complex vibrational dynamics on the dominant 3 Q 0 state or is due to enhanced population and dynamics on the 1 Q 1 state remains an open question.

Funder

Royal Society

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3