Abstract
Abstract
Ionization collisions have important consequences in many physical phenomena, and the mechanism that leads to ionization is not universal. Double differential cross sections (DDCSs) are often used to identify ionization mechanisms because they exhibit features that distinguish close collisions from grazing collisions. In the angular DDCS, a sharp peak indicates ionization through a close binary collision, while a broad angular distribution points to a grazing collision. In the DDCS energy spectrum, electrons ejected through a binary encounter collision result in peak at an energy predicted from momentum conservation. These insights into ionization processes are well-established for plane wave projectiles. However, the recent development of sculpted particle wave packets reopens the question of how ionization occurs for these new particle wave forms. We present theoretical DDCSs for (e,2e) ionization of atomic hydrogen for electron vortex projectiles. Our results predict that the ionization mechanism for vortex projectiles is similar to that of non-vortex projectiles, but that the projectile’s momentum uncertainty causes noticeable changes to the shape and magnitude of the vortex DDCSs. Specifically, there is a broadening and splitting of the angular DDCS peak for vortex projectiles, and an increase in the cross section for high energy ejected electrons.
Funder
National Science Foundation
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献