Ionization in intense laser fields beyond the electric dipole approximation: concepts, methods, achievements and future directions

Author:

Maurer JORCID,Keller UORCID

Abstract

Abstract The electric dipole approximation is widely used in atomic, molecular and optical physics and is typically related to a regime for which the wavelength is much larger than the atomic structure. However, studies have shown that in strong laser fields another regime exists where the dipole approximation breaks down. During the ionization process in intense laser fields and at long wavelengths the photoelectrons can reach higher velocities such that the magnetic field component of the laser field becomes significant. The ionization dynamics and the final momentum of the electron is therefore modified by the entire Lorentz force. In contrast the magnetic field interaction is neglected in the dipole approximation. Rapid developments in laser technology and advancements in the accuracy of the measurements techniques have enabled the observation of the influence of such non-dipole effects on the final angular photoelectron momentum distributions. More recently the number of studies on ionization beyond the dipole approximation has increased significantly, providing more important insight into fundamental properties of ionization processes. For example we have shown that the final three dimensional photoelectron momentum spectra is significantly affected by the non-dipole drift with the parent–ion interaction, the linear multiphoton momentum transfer on a sub-cycle time scale and the sharing of the transferred linear photon momenta between the electron and the ion. In this article we present an overview of the underlying mechanisms and we review the experimental techniques and the achievements in this field. We focus on ionization in strong laser fields in the regime where the dipole approximation is not valid but a fully relativistic description is not required.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3