Steady state quantum statistics of a hybrid optomechanical-ferromagnet system: photon and magnon blockade

Author:

Kheirabady M SetodehORCID,Tavassoly M KORCID

Abstract

Abstract Magnon and photon blockade implementation and manipulation have significant practical applications in quantum information processing and quantum metrology due to their tight relations to single-photon and -magnon source devices. In this paper, we propose an experimentally feasible hybrid scheme for the dynamical description of the tripartite interacting system consisting of magnon and phonon modes with photons in an optomechanical system, from which we aim to explore the quantum statistics, as well as the magnon and photon blockade phenomenon. To achieve the purpose, the dissipative solution of the system is obtained with the help of the Lindblad master equation. Via employing the equal-time second-order correlation function and using the steady state solution of the system, the statistics and blockade effects of magnon and photon are analyzed and also their dependence on the parameters involved in the system are discussed. Utilizing feasible parameters, our simulations illustrate that, sub-Poissonian behavior and therefore, blockade of magnon and photon are simultaneously achieved. More importantly, the mentioned blockade effects can be obtained in a range of parameters (and not with specific) which makes our proposal easy to access, experimentally. Considering the above realizations, the introduced scheme opens up a pathway to design single-magnon and -photon generators, which are of crucial importance in advanced quantum science and technologies.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3