Wigner time delay in photoionization: a 1D model study

Author:

Elghazawy Karim IORCID,Greene Chris HORCID

Abstract

Abstract In scattering theory, the Wigner–Smith time delay, calculated through a phaseshift derivative or its multichannel generalization, has been demonstrated to measure the amount of delay or advance experienced by colliding particles during their interaction with the scattering potential. Fetic, Becker, and Milosevic argue that this concept cannot be extended to include photoionization, viewed as a half-scattering experiment. Their argument is based on the lack of information about scattering phaseshifts in the part of the wavefunction (satisfying the ingoing-wave boundary condition) going to the detector. This article aims to test this claim by examining a photodetachment process in a simple 1D model with a short-range symmetrical potential. Using time-dependent perturbation theory with a dipole interaction, the relevant wavepacket of the outgoing particle is analyzed and compared to the free wavepacket as a reference. Our findings confirm that, indeed, a time delay arises in the liberated fragmentation wavepacket, which is expressed as an energy derivative of the scattering phaseshift. Our study highlights that the source of the phaseshift content in the wavepacket arriving at the detector is the dipole matrix element, which is a direct consequence of imposing the ingoing-wave boundary condition. We illustrate our results through numerical simulations of both the non-free and free wavepackets. The amount of the observed time delay is found to be half of that appearing in a typical scattering experiment.

Funder

Basic Energy Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding attosecond streaking;Reports on Progress in Physics;2024-07-24

2. Wigner time delay revisited;Annals of Physics;2024-06

3. Measurability of Wigner time delay in a photoionization experiment;Canadian Journal of Physics;2024-03-01

4. Time delays in anisotropic systems;Canadian Journal of Physics;2024-02-09

5. Anisotropic molecular photoemission dynamics: Wigner time delay versus time delay from RABBIT measurements;Physical Review A;2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3