Experimental dielectronic recombination rate coefficients for lithium-like 40Ca17+

Author:

Khan NadirORCID,Huang Zhong-Kui,Wen Wei-QiangORCID,Wang Shu-Xing,Chen Chong-Yang,Zhang Chun-Yu,Wang Han-Bing,Liu Xin,Ma Wan-Lu,Chen Dong-Yang,Yao KeORCID,Zhao Dong-Mei,Mao Li-Jun,Ma Xiao-Ming,Li Jie,Tang Mei-Tang,Yin Da-Yu,Yuan You-Jin,Yang Jian-Cheng,Zhu Lin-FanORCID,Ma Xin-WenORCID

Abstract

Abstract The rate coefficients for dielectronic recombination (DR) of lithium-like 40Ca17+ ions with ∆n = 0 core excitations are derived from electron–ion recombination spectra measured with merged-beams method at the heavy-ion storage ring CSRm. The experimental DR spectrum, in the electron–ion collision energy range of 0 to 42 eV in the center-of-mass frame, comprises of all DR resonance peaks belong to the 2s 2 S 1/2 → 2p 2 P 1/2, 3/2 core excitations. The resonant energies and strengths for the resolved resonances in 2pjnl series are determined by fitting of the measured DR peaks. The further interpretation of the measured DR rate coefficients has been performed by calculating the DR rate coefficients with relativistic configuration-interaction method implemented in flexible atomic code (FAC) and compared with the experimental results. The experimental results and FAC calculations are found to be in a good agreement within the experimental uncertainties. Moreover, temperature dependent plasma rate coefficients were constructed from 4 × 103 to 1 × 107 K energy region by convoluting experimental and theoretical DR rate coefficients with the Maxwellian energy distribution function and then compared with previously available data. The plasma DR rate coefficient is found to be significantly underestimated by the early theoretical data calculated by Jacobs et al, and Mazotta et al in the low temperature. In contrast, a very good agreement has been found between the theoretical DR data of Gu and Colgan et al and the presently measured results at the low temperature region. Therefore, the results in this work composed of a bench-mark data set for plasma modeling at the photoionized temperature range. We have also provided a fit to our measured and theoretical plasma rate coefficients for low temperature plasma modeling.

Funder

Key R&D Program of China

Youth Innovation Promotion Association

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3