Nonclassical photon statistics and photon squeezing in the dissipative mixed quantum Rabi model

Author:

Chen Xu-Min,Chen Zhe-Kai,Che Han-Xin,Wang ChenORCID

Abstract

Abstract Nonclassical two-photon statistics and photon squeezing are considered as representative features of the nonclassicality of light. In this work we investigate two-photon correlation function and quadrature photon squeezing in the dissipative mixed quantum Rabi model (QRM), which includes both the one-photon and two-photon qubit–resonator interactions. The quantum dressed master equation combined with squeezed-coherent states is applied to obtain the steady state. Based on the zero-time delay two-photon correlation function, it is found that with the increase of the two-photon qubit–resonator interaction strength the photon antibunching behavior is monotonically suppressed, whereas the photon bunching signature persists. One additional giant photon bunching feature is unraveled at deep-strong two-photon coupling, which mainly stems from efficient successive transition trajectories. The finite-time delay two-photon correlation function asymptotically approaches the unit by raising the delayed time. Moreover, the steady-state quadrature photon squeezing becomes significant at strong two-photon coupling, which may become perfect in the zero temperature limit.

Funder

National Natural Science Foundation of China

the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3