Crossover from a delocalized to localized atomic excitation in an atom–waveguide interface

Author:

Jen H HORCID,You J-SORCID

Abstract

Abstract An atom–waveguide system, which presents one of the quantum interfaces that enable strong couplings between light and atoms, can support tightly-confined guided modes of light. In this distinctive quantum interface, we theoretically investigate the crossover from a delocalized to localized atomic excitation under long-range dipole–dipole interactions and lattice disorders. Both localization lengths of the excitation distributions and power-law scalings of dissipative von Neumann entanglement entropy show signatures of this crossover. We further calculate numerically the level statistics of the underlying non-Hermitian Hamiltonian, from which as the disorder strength increases, the gap ratio decreases and the intrasample variance increases before reaching respective saturated values. The mean gap ratio in the deeply localized regime is close to the one from Poisson statistics along with a relatively large intrasample variance, whereas in the nondisordered regime, a significant level repulsion emerges. Our results provide insights to study the non-ergodic phenomenon in an atom–waveguide interface, which can be potentially applied to photon storage in this interface under dissipations.

Funder

Ministry of Science and Technology, Taiwan

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chiral-coupling-assisted refrigeration in trapped ions;Journal of Physics B: Atomic, Molecular and Optical Physics;2023-04-19

2. Quantum correlations of localized atomic excitations in a disordered atomic chain;Physical Review A;2022-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3