Exploring symmetries in photoelectron holography with two-color linearly polarized fields

Author:

Rook T,Figueira de Morisson Faria CORCID

Abstract

Abstract We investigate photoelectron holography in bichromatic linearly polarized fields of commensurate frequencies and , with emphasis on the existing symmetries and for which values of the relative phase between the two driving waves they are kept or broken. Using group-theoretical methods, we show that, additionally to the well-known half-cycle symmetry, which is broken for r + s odd, there are reflection symmetries around the field zero crossings and maxima, which may or may not be kept, depending on how both waves are dephased. The three symmetries are always present for monochromatic fields, while for bichromatic fields this is not guaranteed, even if r + s is even and the half-cycle symmetry is retained. Breaking the half-cycle symmetry automatically breaks one of the other two, while, if the half-cycle symmetry is retained, the other two symmetries are either both kept or broken. We analyze how these features affect the ionization times and saddle-point equations for different bichromatic fields. We also provide general expressions for the relative phases ϕ which retain specific symmetries. As an application, we compute photoelectron momentum distributions for ω − 2ω fields with the Coulomb quantum orbit strong-field approximation and assess how holographic structures such as the fan, the spider and interference carpets behave, focusing on the reflection symmetries. The features encountered can be traced back to the field gradient and amplitude affecting ionization probabilities and quantum interference in different momentum regions.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Reference161 articles.

1. Molecular imaging using recolliding electrons;Lein;J. Phys. B: At. Mol. Opt. Phys.,2007

2. Attosecond physics;Krausz;Rev. Mod. Phys.,2009

3. Imaging orbitals with attosecond and Ångström resolutions: toward attochemistry?;Salières;Rep. Prog. Phys.,2012

4. Attosecond science: recent highlights and future trends;Gallmann;Annu. Rev. Phys. Chem.,2012

5. The physics of attosecond light pulses;Agostini;Rep. Prog. Phys.,2004

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3