Abstract
Abstract
Our theoretical calculation and analysis show that the configuration of transition-metal (TM) atoms on iridium-doped graphene depends on the number of the d-state valence electrons of the TM atoms. TM atoms with three or less d-state valence electrons prefer to form a horizontal configuration and destroy the original C3v symmetry of the substrate. If there are more than three (but not five) d-state valence electrons in a TM atom, the TM atom selects the site just on the top of the iridium atoms and thus forms a vertical configuration, and the C3v symmetry of the iridium-doped graphene remains. For TM atoms with five d-state valence electrons and a closed s shell, the TM atoms and the iridium-doped graphene prefer to form an inclined configuration. The configuration regularity of the iridium-doped graphene-adsorbing TM atoms is attributed to the unique spin and orbital angular momentum of the electron in the iridium-doped graphene and the unique selection rule of the charge transfer under spin polarization.
Funder
Nanchang Normal University Scientific Research Foundation for the Doctorate Personnel
the Major Research plan of the National Natural Science Foundation of China
National Lab of Solid State Microstructures, Nanjing University
National Natural Science Foundation of China
The Project Supported by Natural Science Foundation of Jiangxi
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献