Iteration of semiconductor Bloch equations for ultrashort laser pulse propagation

Author:

Pfeiffer Adrian NORCID

Abstract

Abstract The numerical propagation of intense laser pulses through bulk material requires the recurrent calculation of the nonlinear material response. To describe the optical Kerr effect and the current in the conduction band for macroscopic propagation distances, very simplified models are typically used. Recent studies of the response of dielectrics to intense few-cycle pulses have revealed that ionization does not accumulate monotonically, but conduction bands are populated both irreversibly and reversibly during a laser cycle. The reversible (or transient or virtual) population of the conduction bands is not captured by simple response models. Here, an efficient iteration based on the semiconductor Bloch equations for three bands is developed, which consistently captures the laser cycle resolved interband polarization and intraband current. The full calculation of the nonlinear material response at each propagation step is avoided, instead only the incremental modification of the previous propagation step is calculated. The iteration is particularly well-suited for very short pulses and can be applied for intensities above the critical value at which perturbation theory does not converge. Furthermore, it is shown that virtual currents and dynamic Bloch oscillations are mechanisms which are missing in the Drude model, but these two mechanisms prevail for short intense pulses. Therefore, a generalized Drude model is derived from the SBEs, which is capable to account for arbitrary band shapes and both real and virtual ionization.

Funder

Deutsche Forschungsgemeinschaft

Europãische Fonds fãr regionale Entwicklung (EFRE) Thãringen

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3