Quantifying the breakdown of the rotating-wave approximation in single-photon superradiance

Author:

Jørgensen M AORCID,Wubs MORCID

Abstract

Abstract We study quantitatively the breakdown of the rotating-wave approximation (RWA) when calculating collective light emission by quantum emitters, in particular in the weak-excitation limit. Our starting point is a known multiple-scattering formalism where the full light–matter interaction leads to induced inter-emitter interactions described by the classical Green function of inhomogeneous dielectric media. When making the RWA in the light–matter interaction, however, these induced interactions differ from the classical Green function, and for free space we find a reduction of the interatomic interaction strength by up to a factor of two. By contrast, for the corresponding scalar model the relative RWA error for the inter-emitter interaction even diverges in the near field. For two identical emitters, the errors due to the RWA in collective light emission will show up in the emission spectrum, but not in the sub- and superradiant decay rates. In case of two non-identical emitters, also the collective emission rates will differ by making the RWA. For three or more identical emitters, the RWA errors in the interatomic interaction in general affect both the collective emission spectra and the collective decay rates. Ring configurations with discrete rotational symmetry are an interesting exception. Interestingly, the maximal errors in the collective decay rates due to making the RWA occur for finite emitter separations.

Funder

Danmarks Grundforskningsfond

Det Frie Forskningsråd

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3