Magnetic field enhanced laser absorption on a metallic surface incorporated with shape-dependent nanostructures

Author:

Simon MosesORCID,Chauhan PrashantORCID

Abstract

Abstract This communication proposes an analytical model to investigate the nanoparticle-based nonlinear absorption phenomenon associated with an obliquely incident p-polarized laser beam on a metallic surface. In this scheme, the surface is ingrained with noble-metal spherical nanoparticles and cylindrical nanoparticles in the presence of an external static magnetic field. The absorption of laser energy in the presence of nanoparticles (NPs) is attributed to surface plasmon resonance and enhanced magnetic-field effects. The absorption phenomenon is significantly enhanced by the incorporation of nanostructures and a magnetic field. The ellipticity characterizing parameter, which significantly influences the resonant frequency of different nanometric structures, has also been analysed and discussed. The effects of varying the magnetic field intensity, incident angle, size, and spacing of the NP were examined to determine their influence on the anomalous absorption of the laser. Furthermore, a direct dependency was found between the absorption coefficient and transmission coefficient of the incident laser, as well as the dimensions of the NPs. Several applications have direct relevance to this study, including biosensors such as DNA sensors and immunosensors, photothermal therapy, photoacoustic imaging, optoelectronic devices, solar cells, and surface-enhanced Raman spectroscopy.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3