Population transfer to high angular momentum states in infrared-assisted XUV photoionization of helium

Author:

Mayer NicolaORCID,Peng Peng,Villeneuve David MORCID,Patchkovskii Serguei,Ivanov Misha,Kornilov Oleg,Vrakking Marc J JORCID,Niikura HiromichiORCID

Abstract

Abstract An extreme-ultraviolet (XUV) laser pulse consisting of harmonics of a fundamental near-infrared (NIR) laser frequency is combined with the NIR pulse to systematically study two-color photoionization of helium atoms. A time-resolved photoelectron spectroscopy experiment is carried out where energy- and angle-resolved photoelectron distributions are obtained as a function of the NIR intensity and wavelength. Time-dependent Schrödinger equation calculations are performed for the conditions corresponding to the experiment and used to extract residual populations of Rydberg states resulting from excitation by the XUV + NIR pulse pair. The residual populations are studied as a function of the NIR intensity (3.5 × 1010 − 8 × 1012 W cm−2) and wavelength (760–820 nm). The evolution of the photoelectron distribution and the residual populations are interpreted using an effective restricted basis model, which includes the minimum set of states relevant to the features observed in the experiments. As a result, a comprehensive and intuitive picture of the laser-induced dynamics in helium atoms exposed to a two-color XUV–NIR light field is obtained.

Funder

US Air Force Office of Scientific Research

Japan Society for the Promotion of Science

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-order above-threshold ionization from a coherent superposition of states;Physical Review A;2022-07-15

2. J-Matrix time propagation of atomic hydrogen in attosecond fields;Scientific Reports;2022-07-01

3. Linear dichroism in few-photon ionization of laser-dressed helium;The European Physical Journal D;2021-07

4. Attosecond technology(ies) and science;Journal of Physics B: Atomic, Molecular and Optical Physics;2021-04-07

5. Photoelectron spectroscopy of laser-dressed atomic helium;Physical Review A;2020-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3