Abstract
Abstract
The difference in the static electric dipole polarizabilities of the
1
s
55
s
3
S
1
and
1
s
56
s
3
S
1
Rydberg levels in helium has been eliminated by dressing the atom with a microwave field near resonant with the single-photon
1
s
55
s
3
S
1
→
1
s
55
p
3
P
J
transition. For an
2.82
m
V
c
m
−
1
amplitude dressing field, detuned by
2
π
×
10
M
H
z
from the zero-field
1
s
55
s
3
S
1
→
1
s
55
p
3
P
2
transition frequency, the dc Stark shift of the two-photon
1
s
55
s
3
S
1
→
1
s
56
s
3
S
1
transition between these states remained within
±
15
k
H
z
for electric fields up to
∼
60
m
V
c
m
−
1
. This transition was probed by single-color two-photon microwave spectroscopy, and by two-color two-photon spectroscopy with one strong additional dressing field and a weak probe field. For all measurements, the transition frequencies and Stark shifts were compared, and found to be in excellent quantitative agreement with the results of Floquet calculations of the energy-level structure of the Rydberg states in the presence of the dressing fields and applied dc electric fields. The two-color microwave dressing scheme demonstrated, with one field applied to null the differential polarizability of the Rydberg–Rydberg transition, and the second exploited to allow the two-photon transition to be employed to achieve tunable absorption of single-photons from a weak probe field, will facilitate improved coherence times and tunable single-photon absorption in hybrid cavity QED experiments with Rydberg atoms and superconducting microwave circuits.
Funder
Engineering and Physical Sciences Research Council
H2020 European Research Council
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献