Abstract
Abstract
Discrete modulation can make up for the shortage of transmission distance in measurement-device-independent continuous-variable quantum key distribution (MDI-CVQKD), providing a unique advantage against all side-channel attacks but also creating a challenge for further performance improvement. Here we suggest a quantum catalysis (QC) approach for enhancing the performance of the discrete-modulated (DM) MDI-CVQKD in terms of the achievable secret key rate and lengthening the maximal transmission distance. The numerical simulation results show that the QC-based MDI-CVQKD with discrete modulation, involving a zero-photon catalysis (ZPC) operation, can not only obtain a higher secret key rate than the original DM protocol, but also contribute to a reasonable increase of the corresponding optimal variance. As for the extreme asymmetric and symmetric cases, the secret key rate and maximal transmission distance of the ZPC-involved DM MDI-CVQKD system can be further improved under the same parameters. This approach enables the system to tolerate lower reconciliation efficiency, which may provide excellent potential for practical implementations with state-of-art technology.
Funder
National Natural Science Foundation of China
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献