Abstract
Abstract
Inter-particle Coulombic electron capture (ICEC) is an environment-enabled electron capture process by means of which a free electron can be efficiently attached to a system (e.g. ion, atom, molecule, or quantum dot (QD)). The excess electron attachment energy is simultaneously transferred to a neighbouring system which concomitantly undergoes ionization (or excitation). ICEC has been theoretically predicted in van-der-Waals and in hydrogen-bonded systems as well as in QD arrays. The theoretical approaches employed in these works range from analytical models to electronic structure and (quantum) dynamical calculations. In this article, we provide a comprehensive review of the main theoretical approaches that have been developed and employed to investigate ICEC and summarize the main conclusions learned from these works. Since knowledge on ICEC is still in its early stage, we conclude this review with our own views and proposals on the future perspectives for the research in ICEC.
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献