Enhancing the performance of coupled quantum Otto thermal machines without entanglement and quantum correlations

Author:

El Makouri Abdelkader,Slaoui AbdallahORCID,Daoud Mohammed

Abstract

Abstract We start with a revision study of two coupled spin- 1 / 2 under the influence of Kaplan–Shekhtman–Entin-Wohlman–Aharony interaction and a magnetic field. We first show the role of idle levels, i.e. levels that do not couple to the external magnetic field, when the system is working as a heat engine as well as when it is a refrigerator. Then we extend the results reported in Altintas and Müstecaplıoğlu (2015 Phys. Rev. E 92 022142) by showing that it is not necessary to change both the magnetic field as well as the coupling parameters to break the extensive property of the work extracted globally from two coupled spin- 1 / 2 as has been demonstrated there. Then we study the role of increasing the number of coupled spins on efficiency, extractable work, and coefficient of performance (COP). First, we consider two- and three-coupled spin- 1 / 2 Heisenberg X X X -chain. We prove that the latter can outperform the former in terms of efficiency, extractable work, and COP. Then we consider the Ising model, where the number of interacting spins ranges from two to six. We show that only when the number of interacting spins is odd the system can work as a heat engine in the strong coupling regime. The enhancements in efficiency and COP are explored in detail. Finally, this model confirms the idea that entanglement and quantum correlations are not the reasons behind the enhancements observed in efficiency, extractable work, and COP, but only due to the structure of the energy levels of the Hamiltonian of the working substance. In addition to this, the extensive property of global work as well, is not affected by entanglement and quantum correlations.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Reference92 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3