Abstract
Abstract
In recent years, molecular alignment echoes induced by a pair of time-delayed femtosecond laser pulses have been proposed and have aroused wide research interest. However, we demonstrate that an alignment echo can be alternatively produced by a shaped femtosecond laser pulse with a V-style spectral phase modulation. The full, fractional, and imaginary alignment echoes are formed by the excitation of the tailored two time-delayed sub-pulses. Both the delay time and the ratio of intensity between the two sub-pulses can be easily manipulated by designing the modulation parameters to induce various types of echoes. We further show that the optimal ratio of intensity between the two sub-pulses, which results in the maximal alignment degrees of the full echo, closely correlates with the energy of the sub-pulse. When the pulse energy is relatively low, the maximal alignment degree of the full echo is obtained when the two sub-pulses have equal intensity. The optimal ratio of intensity increases with the excitation energy of the first pump pulse.
Funder
National Natural Science Foundation of China
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献