Abstract
Abstract
Graphene can be magnetized through nonlinear response of its orbital angular momentum to an intense circularly polarized light. This optomagnetic effect can be well exemplified by the inverse Faraday effect (IFE) where an optically-generated DC magnetization leads to graphene’s optical activity. We provide a single-particle quantum mechanical model of an IFE in graphene by solving Schrödinger’s equation in the presence of a renormalized Hamiltonian near a Dirac point in the presence of circularly polarized monochromatic light. We derive an analytical expression for DC magnetization based on non-perturbative and dressed states of quasi-electrons where their energy spectrum is isotropically gapped by the circularly polarized light. Optical rotatory power is then computed through the gyroelectric birefringence where a measurable polarization rotation angle under moderate and intense optical radiations is predicted.
Funder
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Mitacs
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献