Additive manufacturing in radiation oncology: a review of clinical practice, emerging trends and research opportunities

Author:

Tino RanceORCID,Leary Martin,Yeo Adam,Kyriakou Elizabeth,Kron Tomas,Brandt Milan

Abstract

Abstract The additive manufacturing (AM) process plays an important role in enabling cross-disciplinary research in engineering and personalised medicine. Commercially available clinical tools currently utilised in radiotherapy are typically based on traditional manufacturing processes, often leading to non-conformal geometries, time-consuming manufacturing process and high costs. An emerging application explores the design and development of patient-specific clinical tools using AM to optimise treatment outcomes among cancer patients receiving radiation therapy. In this review, we: • highlight the key advantages of AM in radiotherapy where rapid prototyping allows for patient-specific manufacture • explore common clinical workflows involving radiotherapy tools such as bolus, compensators, anthropomorphic phantoms, immobilisers, and brachytherapy moulds; and • investigate how current AM processes are exploited by researchers to achieve patient tissue-like imaging and dose attenuations. Finally, significant AM research opportunities in this space are highlighted for their future advancements in radiotherapy for diagnostic and clinical research applications.

Funder

ARC Industrial Transformation Training Centre for Additive Biomanufacturing

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3