Control of temperature dependent viscosity for manufacturing of Bi-doped active fiber

Author:

Duan Rui,Chen Jingfei,Ke Hao,Wei Tianxia,Zhang Ke,Li Xueliang,Feng Xu,Zheng Qiuju,He Zhixue,Qiu JianrongORCID,Zhou ShifengORCID

Abstract

Abstract Bi-activated photonic materials are promising for various applications in high-capacity telecommunication, tunable laser, and advanced bioimaging and sensing. Although various Bi-doped material candidates have been explored, manufacturing of Bi heavily doped fiber with excellent optical activity remains a long-standing challenge. Herein, a novel viscosity evolutional behavior mediated strategy for manufacturing of Bi-doped active fiber with high dopant solubility is proposed. The intrinsic relation among the evolution of Bi, reaction temperature and viscosity of the glass system is established. Importantly, the effective avenue to prevent the undesired deactivation of Bi during fiber drawing by tuning the temperature dependent viscosity evolution is built. By applying the strategy, for the first time we demonstrate the success in fabrication of heavily doped Bi active fiber. Furthermore, the principal fiber amplifier device is constructed and broadband optical signal amplification is realized. Our findings indicate the effectiveness of the proposed temperature dependent viscosity mediated strategy for developing novel photonic active fiber, and they also demonstrate the great potential for application in the next-generation high-capacity telecommunication system.

Funder

the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program

the Sponsored Research Project of Corning Incorporated

the Foundation of State Key Laboratory of Reactor System Design Technology, the Fundamental Research Funds for the Central University

Foshan Science and Technology Innovation Project

the National Natural Science Foundation of China

the National Science Fund for Distinguished Young Scholars

the National Key R&D Program of China

the Foundation of State Key Laboratory of Reactor System Design Technology, the Large Scientific Facility Open Subject of Songshan Lake, Dongguan, Guangdong

the Research Project supported by State Key Lab of Luminescent Materials and Devices, South China University of Technology

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3