Progresses on cryo-tribology: lubrication mechanisms, detection methods and applications

Author:

Cui Wenyan,Chen Hongzhan,Zhao Jianxun,Ma Quansheng,Xu Qiang,Ma TianbaoORCID

Abstract

Abstract Tribology at cryogenic temperatures has attracted much attention since the 1950s with the acceleration of its applications in high-tech equipment such as cryogenic wind tunnels, liquid fuel rockets, space infrared telescopes, superconducting devices, and planetary exploration, which require solid lubrication for moving parts at low temperatures down to 4 K in cryogenic liquid, gaseous, or vacuum environments. Herein, the research progress regarding cryo-tribology is reviewed. The tribological properties and mechanisms of solid lubricants listed as carbon materials, molybdenum disulfide, polymers, and polymer-based composites with decreasing temperature are summarized. The friction coefficient increases with decreasing temperature induced by thermally activated processes. The mechanism of transfer film formation should be considered as a significant way to enhance the tribological properties of solid lubricants. In addition, applications of solid lubrication on moving parts under cryogenic conditions, such as spherical plain bearings and roller bearings, are introduced. The technology for tribological testing of materials and bearings at cryogenic temperatures is summarized, where the environmental control, motion and loading realization, as well as friction and wear measurement together in a low-temperature environment, result in the difficulties and challenges of the low-temperature tribotester. In particular, novel technologies and tribotesters have been developed for tribotests and tribological studies of solid lubricants, spherical plain bearings, and roller bearings, overcoming limitations regarding cooling in vacuum and resolution of friction measurement, among others, and concentrating on in-situ observation of friction interface. These not only promote a deep understanding of friction and wear mechanism at low temperatures, but also provide insights into the performance of moving parts or components in cryogenic applications.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3