Investigation of melt-growth alumina/aluminum titanate composite ceramics prepared by directed energy deposition

Author:

Huang Yunfei,Wu Dongjiang,Zhao Dake,Niu FangyongORCID,Ma Guangyi

Abstract

Abstract Al2O3/Al6Ti2O13 composite ceramics with low thermal expansion properties are promising for the rapid preparation of large-scale and complex components by directed energy deposition-laser based (DED-LB) technology. However, the wider application of DED-LB technology is limited due to the inadequate understanding of process conditions. The shaping quality, microstructure, and mechanical properties of Al2O3/Al6Ti2O13 (6 mol% TiO2) composite ceramics were systematically investigated as a function of energy input in an extensive process window. On this basis, the formation mechanism of solidification defects and the evolution process of microstructure were revealed, and the optimized process parameters were determined. Results show that high energy input improves the fluidity of the molten pool and promotes the uniform distribution and full growth of constituent phases, thus, facilitating the elimination of solidification defects, such as pores and strip gaps. In addition, the microstructure size is strongly dependent on the energy input, increasing when the energy input increases. Moreover, the morphology of the α-Al2O3 phase gradually transforms from cellular into cellular dendrite with increasing energy input due to changing solidification conditions. Under the comprehensive influence of solidification defects and microstructure size, the fracture toughness and flexural strength of Al2O3/Al6Ti2O13 composite ceramics present a parabolic law behavior as the energy input increases. Optimal shaping quality and excellent mechanical properties are achieved at an energy input range of 0.36−0.54 W*min2 g−1 mm−1. Within this process window, the average microhardness, fracture toughness, and flexural strength of Al2O3/Al6Ti2O13 composite ceramics are up to 1640 Hv, 3.87 MPa m1/2, and 227 MPa, respectively. This study provides practical guidance for determining the process parameters of DED-LB of melt growth Al2O3/Al6Ti2O13 composite ceramics.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Liaoning Province Natural Science Foundation Guidance Program

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3