Achieving a sub-10 nm nanopore array in silicon by metal-assisted chemical etching and machine learning

Author:

Chen YunORCID,Chen Yanhui,Long Junyu,Shi Dachuang,Chen Xin,Hou Maoxiang,Gao Jian,Liu Huilong,He Yunbo,Fan Bi,Wong Ching-Ping,Zhao Ni

Abstract

Abstract Solid-state nanopores with controllable pore size and morphology have huge application potential. However, it has been very challenging to process sub-10 nm silicon nanopore arrays with high efficiency and high quality at low cost. In this study, a method combining metal-assisted chemical etching and machine learning is proposed to fabricate sub-10 nm nanopore arrays on silicon wafers with various dopant types and concentrations. Through a SVM algorithm, the relationship between the nanopore structures and the fabrication conditions, including the etching solution, etching time, dopant type, and concentration, was modeled and experimentally verified. Based on this, a processing parameter window for generating regular nanopore arrays on silicon wafers with variable doping types and concentrations was obtained. The proposed machine-learning-assisted etching method will provide a feasible and economical way to process high-quality silicon nanopores, nanostructures, and devices.

Funder

General Research Fund from Hong Kong Research Grants Council

Research and Development Program of Guangdong Province

Fund of Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3