Temperature-mediated structural evolution of vapor–phase deposited cyclosiloxane polymer thin films for enhanced mechanical properties and thermal conductivity

Author:

Du Weiwei,Tu Jing,Qiu Mingjun,Zhou Shangyu,Luo Yingwu,Ong Wee-LiatORCID,Zhao JunjieORCID

Abstract

Abstract Polymer-derived ceramic (PDC) thin films are promising wear-resistant coatings for protecting metals and carbon–carbon composites from corrosion and oxidation. However, the high pyrolysis temperature hinders the applications on substrate materials with low melting points. We report a new synthesis route for PDC coatings using initiated chemical vapor deposited poly(1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane) (pV3D3) as the precursor. We investigated the changes in siloxane moieties and the network topology, and proposed a three-stage mechanism for the thermal annealing process. The rise of the connectivity number for the structures obtained at increased annealing temperatures was found with strong correlation to the enhanced mechanical properties and thermal conductivity. Our PDC films obtained via annealing at 850 °C exhibit at least 14.6% higher hardness than prior reports for PDCs synthesized below 1100 °C. Furthermore, thermal conductivity up to 1.02 W (mK)−1 was achieved at the annealing temperature as low as 700 °C, which is on the same order of magnitude as PDCs obtained above 1100 °C. Using minimum thermal conductivity models, we found that the thermal transport is dominated by diffusons in the films below the percolation of rigidity, while ultra-short mean-free path phonons contribute to the thermal conductivity of the films above the percolation threshold. The findings of this work provide new insights for the development of wear-resistant and thermally conductive PDC thin films for durable protection coatings.

Funder

Shanxi Institute of Zhejiang University for New Materials and Chemical Industry

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Science and Technology Department of Zhejiang Province

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3