Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 µm) for bubble/gas manipulation

Author:

Yong Jiale,Yang Qing,Huo Jinglan,Hou Xun,Chen FengORCID

Abstract

Abstract Underwater transportation of bubbles and gases has essential applications in manipulating and using gas, but achieving this function at the microscopic level remains a significant challenge. Here, we report a strategy to self-transport gas in water along a laser-induced open superhydrophobic microchannel with a width less than 100 µm. The femtosecond laser can directly write superhydrophobic and underwater superaerophilic microgrooves on the polytetrafluoroethylene (PTFE) surfaces. In water, the single laser-induced microgroove and water medium generate a hollow microchannel. When the microchannel connects two superhydrophobic regions in water, the gas spontaneously travels from the small region to the large area along this hollow microchannel. Gas self-transportation can be extended to laser-drilled microholes through a thin PTFE sheet, which can even achieve anti-buoyancy unidirectional penetration. The gas can overcome the bubble’s buoyance and spontaneously travel downward. The Laplace pressure difference drives the processes of spontaneous gas transportation and unidirectional bubble passage. We believe the property of gas self-transportation in the femtosecond laser-structured open superhydrophobic and underwater superaerophilic microgrooves/microholes has significant potential applications related to manipulating underwater gas.

Funder

the Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

the International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3