Dynamic modeling of ultra-precision fly cutting machine tool and the effect of ambient vibration on its tool tip response

Author:

Ding JianguoORCID,Chang Yu,Chen Peng,Zhuang Hui,Ding Yuanyuan,Lu Hanjing,Chen Yiheng

Abstract

Abstract The dynamic performances of an ultra-precision fly cutting machine tool (UFCMT) has a dramatic impact on the quality of ultra-precision machining. In this study, the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems. In particular, the large-span scale flow field mesh model was created; and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique. The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results. In addition, the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time. Applying it to the dynamic model, the dynamic response of the tool tip under ambient vibration was investigated. The results elucidated that the tool tip response was significantly affected by ambient vibration, and the isolation foundation had a good effect on vibration isolation.

Funder

Science Challenge Program

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3