Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses

Author:

Kawabata ShotaORCID,Bai ShiORCID,Obata KotaroORCID,Miyaji GodaiORCID,Sugioka KojiORCID

Abstract

Abstract Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses (single-pulse mode). However, most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal. In this study, we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures (LIPSS) on silicon. It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction. In contrast, we find that the GHz burst mode femtosecond laser (wavelength: 1030 nm, intra-pulse duration: 220 fs, intra-pulse interval time (intra-pulse repetition rate): 205 ps (4.88 GHz), burst pulse repetition rate: 200 kHz) creates unique two-dimensional (2D) LIPSS. We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism. Specifically, generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS. Additionally, hydrodynamic instability including convection flow determines the final structure of 2D LIPSS.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3