A probabilistic-phase field model for the fracture of brittle materials

Author:

Alabdullah MohammadORCID,Ghoniem Nasr M

Abstract

Abstract We develop a computational method to determine the failure probability of brittle materials under general mechanical loading conditions. The method is a combination of two parts: (1) numerical simulations of materials with multiple cracks using phase field theory, where the complete fracture process is viewed as ‘damage percolation’ along critical paths or clusters of cracks, rather than the traditional weak-link failure mechanism of Weibull, and (2) an extension of the Batdorf statistical theory of fracture to finite domains, where it is implemented within the finite element framework. The results of phase-field simulations at the ‘percolation threshold’ are used as failure data in the Batdorf theory to determine the overall probability of failure. The input to this approach is the size distribution of cracks in a pristine material. An example is shown, where alumina samples that were previously tested by Abe and coworkers (Abe et al 2003 J. Am. Ceram. Soc. 86 1019–21) in four-point loading are compared to the results of our numerical simulations. The approach developed here has the advantage of being extendable to more complex thermomechanical loading.

Funder

Kuwait University

DOE

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3