Modeling of the precipitation kinetics and morphology evolution of lamellar α in Ti-alloys during non-isothermal treatments

Author:

Liu XueyanORCID,Li HongweiORCID,Zhan MeiORCID

Abstract

Abstract The non-isothermal diffusional phase transformation plays an important role in adjusting materials microstructure. In the modeling of non-isothermal transformation, actual temperature history has a remarkable effect on the precipitation kinetics of new phase. When morphology anisotropy effect is considered, taking actual temperature history effect into account is very difficult for guaranteeing the accuracy of kinetics prediction. In order to solve this problem, a new non-isothermal transformation model in combination with cellular automaton (CA) method with mixed-controlled mode was proposed. In this new model, actual temperature history effect was characterized by the effects of cooling path and additive isothermal path on the nucleation and growth of new phase. Firstly, the cooling path with the consideration of supercooling effect was introduced into the created isothermal transformation theory model. Secondly, the temperature-time path (i.e. additive isothermal path) in CA model was calibrated by using the solute concentration model from experiments. With the use of this new model, the precipitation kinetics and morphology evolution of the lamellar α for IMI834 titanium alloy during continuous cooling from single-phase region was predicted. The predicted results were in good agreement with experiments. It was also revealed that the dominant role of mixed-controlled mode for lamellar α precipitation was gradually changed from the diffusion control to the interface control with the increase of cooling rate.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Natural Science Foundation

Analytical & Testing Center of Northwestern Polytechnical

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3