Understanding neural network tuned Langevin thermostat effect on predicting thermal conductivity of graphene-coated copper using nonequilibrium molecular dynamics simulations

Author:

Toprak KasimORCID

Abstract

Abstract Copper has always been used in thermoelectric applications due to its extensive properties among metals. However, it requires further improving its heat transport performance at the nanosized applications by supporting another high thermal conductivity material. Herein, copper was coated with graphene, and the neural network fitting was employed for the nonequilibrium molecular dynamics simulations of graphene-coated copper nanomaterials to predict thermal conductivity. The Langevin thermostat that was tuned with a neural network fitting (NNF), which makes up the backbone of deep learning, generated the temperature difference between the two ends of the models. The NNF calibrated the Langevin thermostat damping constants that helped to control the temperatures precisely. The buffer and thermostat lengths were also analyzed, and they have considerable effects on the thermostat temperatures and a significant impact on the thermal conductivity of the graphene-coated copper. Regarding thermal conductivity, the four different shapes of vacancy defect concentrations and their locations in the graphene sheets were further investigated. The vacancy between the thermostats significantly decreases the thermal conductivity; however, the vacancy defect in thermostats does not have a similar effect. When the graphene is placed between two copper blocks, the thermal conductivity decreases drastically, and it continues to drop when the sine wave amplitude on the graphene sheet increases.

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3