An assessment of statistical models of competitive growth during transient Ostwald ripening in turbine disc nickel-based superalloys

Author:

Anderson M JORCID,Liao LORCID,Basoalto H CORCID

Abstract

Abstract The ability to accurately predict the time evolution of precipitate size distributions is fundamental to optimising heat treatments and mechanical properties of engineering alloys. Mean-field models of the particle growth rates assume that diffusion fields between neighbouring particles are weakly coupled reducing the problem to a single particle embedded in an effective medium. This regime of behaviour is expected to be satisfied for low volume fraction alloys. However, these assumptions are not fulfilled in many applications of interest where strong interactions between precipitates holds. Correction factors are often introduced to account for the accelerated rate of diffusion caused by the overlapping of diffusion fields between neighbouring precipitates. This paper applies the Wang–Glicksman–Rajan–Voorhees (WGRV) discrete point-source/sink model to compare descriptions of competitive growth. This includes assessing correction factors to the mean-field particle growth rate derived by Ardell, Marqusee and Ross, and Svoboda and Fischer in addition to Di Nunzio’s pairwise interaction model. The WGRV model is used as a benchmark to compare different approximations of competitive growth that apply similar assumptions. This is followed by the application of the models to simulate precipitation kinetics during long term aging kinetics observed in the nickel-based superalloys IN738LC and RR1000. It is shown that the competitive growth correction factors are accurate for volume fractions of 20% and under-predict the acceleration of precipitate kinetics predicted at 40%. The WGRV model is able to capture the coarsening kinetics observed in both IN738LC and RR1000 with reasonable accuracy. The WGRV model determines particle growth rates as a function of the immediate neighbourhood and provides an improved prediction of the coarsening behaviour of tertiary particles in RR1000 in comparison to the mean-field approximation, however over-estimates the growth rate of the tertiary particles compared to experimental data.

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3