Abstract
Abstract
The interactions between dislocations and interface/grain boundaries, including dislocation absorption, transmission, and reflection, have garnered significant attention from the research community for their impact on the mechanical properties of materials. However, the traditional approaches used to simulate grain boundaries lack physical fidelity and are often incompatible across different simulation methods. We review a new mesoscale interface boundary condition based on Burgers vector conservation and kinetic dislocation reaction processes. The main focus of the paper is to demonstrate how to unify this boundary condition with different plasticity simulation approaches such as the crystal plasticity finite element (CPFEM), continuum dislocation dynamics (CDD), and discrete dislocation dynamics (DDD) methods. In DDD and CDD, plasticity is simulated based on dislocation activity; in the former, dislocations are described as discrete lines while in the latter in terms of dislocation density. CPFEM simulates plasticity in terms of slip on each slip system, without explicit treatment of dislocations; it is suitable for larger scale simulations. To validate our interface boundary condition, we implemented simulations using both the CPFEM method and a two-dimensional CDD model. Our results show that our compact and physically realistic interface boundary condition can be easily integrated into multiscale simulation methods and yield novel results consistent with experimental observations.
Funder
Basic and Applied Basic Research Foundation of Guangdong Province
Shenzhen Fundamental Research Program
National Key Research and Development Program of China
Research Grants Council, University Grants Committee