Modeling and simulation of anisotropic cross-linked cellulose fiber networks with an out-of-plane topography

Author:

Agarwal ShubhamORCID,Green Sheldon IORCID,Phani A SrikanthaORCID

Abstract

Abstract Non-woven cellulose fiber networks of low areal density are widely used in many industrial applications and consumer products. A discrete element method (DEM) modeling framework is advanced to simulate the formation of strongly anisotropic cellulose fiber network sheets in the dilute limit with simplified hydrodynamic and hydroelastic interactions. Our modeling accounts for in-plane fiber orientation and viscous drag indirectly by using theories developed by Niskanen (2018 Fundamentals of Papermaking, Trans. 9th Pulp and Paper Fundamental Research Symp. Cambridge, 1989 (FRC) pp 275–308) and Cox (1970 J. Fluid Mech. 44 791–810) respectively. Networks formed on a patterned and flat substrate are simulated for different fiber types, and their tensile response is used to assess the influence of the out-of-plane topographical pattern, specifically, on their stiffness and strength. Sheets with the same grammage and thickness, but composed with a higher fraction of softwood fiber (longer fibers with large diameter), have higher strength and higher strain to failure compared to sheets made from hardwood fibers (short fibers with small diameter). However, varying the fiber fraction produces only an insignificant variation in the initial sheet stiffness. The above simulation predictions are confirmed experimentally for sheets comprised of fibers with different ratios of Eucalyptus kraft and Northern Bleached Softwood Kraft fibers. Sheets with out-of-plane topography show an unsymmetric mass distribution, lower tensile stiffness, and lower tensile strength compared to those formed on a flat substrate. The additional fiber deformation modes activated by the out-of-plane topography, such as bending and twisting, explain these differences in the sheet mechanical characteristics.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3