Abstract
Abstract
Self-assembly by spinodal decomposition is known to be a viable route for synthesizing nanoscaled interfaces in a variety of materials, including metamaterials. In order to tune the response of these specialized materials to external stimuli, knowledge of processing-nanostructure correlations is required. Such an understanding is more challenging to obtain purely by experimental means due to complexity of multicomponent atomic diffusion mechanisms that govern the nanostructural self-assembly. In this work, we introduce a phase-field modeling approach which is capable of simulating the nanostructural evolution in ternary alloy films that are typically synthesized using physical vapor deposition. Based on an extensive parametric study, we analyze the role of the deposition rate and alloy composition on the nanostructural self-assembly in ternary alloy films. The simulated nanostructures are categorized on the basis of nanostructured morphology and mapped over a compositional space to correlate the processing conditions with the film nanostructures. The morphology maps reveal that while deposition rate governs the nanostructural evolution at around equi-molar compositions, the impact of composition on nanostructuring is more pronounced when the atomic ratios of alloying elements are skewed.
Funder
Division of Materials Research
Division of Civil, Mechanical and Manufacturing Innovation
Subject
Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献