Investigating the electronic structure, elastic, magnetic, and thermoelectric nature of NiV X Sc1−X Sb quaternary half-Heusler alloys

Author:

Benabdellah Ghlamallah,Toufik Djaafri,Mokhtari Mohamed,Salman Khan MuhammadORCID,Tawfeek Ahmed M,Ahmad Hijaz

Abstract

Abstract The structural, electronic, magnetic, elastic, and thermoelectric properties of NiV x Sc1−x Sb half Heusler alloys with different compositions were investigated employing a self-consistent first-principles-based calculation that uses the full-potential linearized-augmented-plane-wave method. The structural characteristics, such as the bulk modulus and lattice constants, are examined with various vanadium concentrations. The accurately modified Becke Johnson potential was used to calculate the band gap energies. The equilibrium lattice parameter of the NiScSb type-I structure has the lowest energy and seems to be most stable among the other configurations, with a lattice constant value of 6.04 Å, which deviates from the experimental results by up to 0.5%. The bulk modulus rises as the lattice constant decreases. The ground states of the studied alloy structures are dynamically stable, as concluded by the non-existence of negative phonon frequencies. The band structure of NiScSb (for x = 0) was predicted as a non-magnetic semiconductor with an indirect band nature and an energy gap value of 0.244 eV along (Γ-point > X). This tendency was further supported by the symmetrical shape of the curves that reflect the densities of states for these configuration channels. The thermoelectric characteristics of these various combinations were also thoroughly investigated and discussed.

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3