Microchemistry-dependent simulation of yield stress and flow stress in non-heat treatable Al sheet alloys

Author:

Wong Su LeenORCID,Laptyeva Galyna,Brüggemann ThiemoORCID,Engler Olaf,Roters Franz,Raabe Dierk,Karhausen Kai-Friedrich

Abstract

Abstract A flow stress model which considers the processing conditions for a given alloy composition as well as the microchemistry of the alloy allows for integrated optimization of alloy composition, thermal treatments and forming operations to achieve the desired properties in the most efficient processing route. In the past, a statistical flow stress model for cell forming metals, 3IVM+ (3 Internal Variable Model), has been used for through process modeling of sheet production. However, this model was restricted to a given alloy in the state in which it was calibrated. In this work, the existing 3IVM+ model is augmented with an analytical solute strengthening model which uses input from ab initio simulations. Furthermore, a new particle strengthening model for non-shearable precipitates has been introduced which takes Orowan looping at low temperatures and dislocation climb at high temperatures into account. Hence, the present modeling approach considers the strengthening contributions from solutes, precipitates and forest dislocations. Three case studies on the alloys AA 1110, AA 3003 and AA 8014 are presented to assess the performance of the model in simulating the yield stress and flow stress of Al alloys over a wide range of temperatures and strain rates.

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modelling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3