Abstract
Abstract
The Gurson–Tvergaard–Needleman (GTN) model has provided a powerful description of the nucleation growth and coalescence of micro voids, but it has limitations in simulating shear fracture due to the absence of a description of shear localization behavior. A shear improvement method is proposed for simulating the ductile fracture of materials under different stress states. The modified model not only allows for strain hardening of the matrix material, but also accounts for the stress degradation caused by shear. The strength equation of the material is described by both the shear stress state function and a decay function, making it easier for materials under shear stress state to experience material softening and further inducing shear fracture. The modified GTN model is developed by incorporating the shear stress degradation factor into the yield function, while taking into account both void growth and shear failure mechanisms. By carefully calibrating the model’s parameters, the deformation and fracture processes of tensile, plane strain, notch tensile, and compression specimens in the 7A52 aluminum alloy are simulated. The damage evolution behavior of the material under different stress states is analyzed. The results indicate that the damage include void growth mechanism and void shear mechanism. The proportions of these two mechanisms vary under different levels of stress triaxiality. Upon localizing material deformation, the shear stress state intensifies, and the shear damage mechanism assumes a critical role in fracture. The modified GTN model accurately predicts the load-displacement response and fracture path of the 7A52 aluminum alloy under a wide range of stress states.
Funder
Jiangsu Province Program for Commercialization of Scientific and Technological Achievements
the National Key Research and Development Program of China
Program on Jiangsu Key Laboratory for Clad Materials
Beijing Natural Science Foundation
Subject
Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献