Does the Larkin length exist?

Author:

Rodney DavidORCID,Geslin Pierre-AntoineORCID,Patinet Sylvain,Démery Vincent,Rosso Alberto

Abstract

Abstract The yield stress of random solid solutions is a classic theme in physical metallurgy that currently attracts a renewed interest in connection to high entropy alloys. Here, we revisit this subject using a minimal dislocation dynamics model, where a dislocation is represented as an elastic line with a constant line tension embedded in the stochastic stress field of the solutes. Our exploration of size effects reveals that the so-called Larkin length (Lc ) is not a length scale over which a dislocation can be geometrically decomposed. Instead, Lc is a crossover length scale marking a transition in dislocation behavior identifiable in at least three properties: (1) below Lc , the dislocation is close to straight, aligned in a single energy valley, while above Lc , it roughens and traverses several valleys; (2) the yield stress exhibits pronounced size-dependence below Lc but becomes size-independent above Lc ; (3) the power-spectral density of the dislocation shape changes scaling at a critical wavelength directly proportional to Lc . We show that for white and correlated stress noises, Lc and the thermodynamic limit of the yield stress can be predicted using Larkin’s model, where the noise dependence in the glide direction is neglected. Moreover, we show that our analysis is relevant beyond the minimal line tension model by comparison with atomic-scale simulations. Finally, our work suggests a practical approach for predicting yield stresses in atomistic models of random solid solutions, which only involves small-scale atomistic simulations below Lc .

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3