Abstract
Abstract
Elastic interactions between point defects and sinks, such as dislocations and cavities, affect the diffusion of point defects and are responsible for some of the features observed in microstructures under irradiation. It is therefore necessary to include elastic interactions in kinetic simulations for a quantitative prediction of material properties. In this work a method is presented to accurately and efficiently evaluate the strain field in object kinetic Monte Carlo simulations. It can handle any strain field which is biharmonic, such as the one generated by a dislocation segment or a cavity in isotropic elasticity. A speed-up of several orders of magnitude is obtained compared to the direct summation over strain sources, so that simulations over experimental time scales can be performed within reasonable computation times. The case of a thin foil containing a high density of loops under irradiation is investigated. Loop growth rates are found to depend on the loop radius, as shown experimentally, but more complex effects due to the surrounding microstructure are also highlighted.
Subject
Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献