Abstract
Abstract
We derive the amplitude expansion for a phase-field-crystal (APFC) model that captures the basic physics of magneto-structural interactions. The symmetry breaking due to magnetization is demonstrated, and the characterization of the magnetic anisotropy for a bcc crystal is provided. This model enables a convenient coarse-grained description of crystalline structures, in particular when considering the features of the APFC model combined with numerical methods featuring inhomogeneous spatial resolution. This is shown by addressing the shrinkage of a spherical grain within a matrix, chosen as a prototypical system to demonstrate the influence of different magnetizations. These simulations serve as a proof of concept for the modeling of manipulation of dislocation networks and microstructures in ferromagnetic materials within the APFC model.
Funder
Jülich Supercomputing Center
Emmy Noether Programme of the German Research Foundation
German Research Foundation
Subject
Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献