Investigating the influence of topology on elastic properties in spinodal microstructures

Author:

Golnary FarshidORCID,Asghari Mohsen

Abstract

Abstract Spinodal topologies formed through self-assembly processes exhibit unique mechanical properties, such as smoothness and non-periodicity, making them resistant to buckling and manufacturing defects. While extensive research has focused on their mechanical behavior, limited attention has been given to understanding the impact of their complex topology. This study aims to investigate the relationship between the topological features of two-dimensional spinodal topologies, characterized using computational homology, and their elastic response by analyzing scaling laws. Sensitivity analysis was conducted to determine the influence of various topological characteristics on Young’s modulus and Poisson’s ratio. Computational homology techniques were used to measure Betti numbers, which represent the number of loops and disjoint regions in the spinodal topologies. Additionally, these techniques were also employed to determine the size of these loops and regions. Among all the topological characteristics studied, the number and size of loops were found to have the highest influence on the elastic properties, specifically Young’s modulus and Poisson’s ratio. Understanding the rules that govern the way two-dimensional spinodal topologies respond elastically is crucial for comprehending how they behave mechanically and for optimizing their performance. The research findings highlight the significant impact of certain topological features, specifically the number and size of loops, on the material properties. This knowledge provides valuable insights for designing and engineering spinodal structures.

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Reference43 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3