A first principles investigation of ternary and quaternary II–VI zincblende semiconductor alloys

Author:

Mannodi-Kanakkithodi ArunORCID

Abstract

Abstract One of the most common ways of tuning the stability, electronic structure, and optical behavior of semiconductors is via composition engineering. By mixing multiple isovalent elements at any cation or anion site, new compositions may be generated with markedly different properties than end-point compositions, and not always lying within a predictable trend. In this work, we explore the trends in lattice constant, electronic band gap, formation and mixing energy, and optical absorption behavior in a series of II–VI zincblende semiconductors with Cd/Zn at the cation site and S/Se/Te at the anion site, using multiple levels of density functional theory approximations. We find that while the GGA-PBE functional reproduces all trends correctly, full geometry optimization with the HSE06 functional predicts band gaps with much higher experimental accuracy. We find that all mixed S–Se and mixed Cd–Zn compounds show linear trends in band gap, rising from Se to S and Cd to Zn, respectively, whereas all Se–Te mixed compounds exhibit band gap bowing. All mixing energy curves, calculated based on decomposition to end point compositions, show inverted bowing behavior but with small positive mixing energy values <50 meV per formula unit, indicating robust stability of all solid solutions. Formation energies, calculated based on decomposition to elemental species, always show linear trends and remain sufficiently negative for all binaries, ternaries and quaternaries, whereas lattice constants show expected linear trends. We further report trends in optical absorption spectra and relationships between PBE and HSE computed properties, which reveal equations that can be used to accurately predict higher fidelity data. This work lays out systematic trends in the stability and optoelectronic characteristics of Cd–Zn–S–Se–Te alloys and enables the selection of optimal compositions for desired applications.

Funder

Purdue University

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3