Mechanical characteristics of Ni50Co50/Ni substrate during indentation by molecular dynamics

Author:

Pham Anh-Vu,Fang Te-HuaORCID,Nguyen Van-ThucORCID,Chen Tao-Hsing

Abstract

Abstract Coating an alloys film onto a metallic surface could dramatically improve the surface quality. This report studies the microstructure and intermixing phenomena of Ni50Co50 film deposited on Ni(001) substrate with flat, asperity and trench Ni surfaces by molecular dynamics (MD) simulation. The effects of the film thickness and loading velocity on the mechanical properties and deformation behaviours of the sample are also surveyed by indentation. The results represent that the intermixing and lattice structure of the film is enhanced after annealing. Moreover, the sample hardness is improved as the deposited Ni50Co50 film when the film thickness rising from 18 to 38 Å. In contrast, the structure transformation rate and dislocations density of the sample decrease when the Ni50Co50 film becomes thicker. Interestingly, the plastic deformation rate and dislocation density of the sample at the trench surface are higher than the flat one. Besides, the increase of the loading velocity gives rise to the plastic deformation and the local stress rates. The dislocation density of the Ni50Co50/Ni sample is reduced if the loading speed is high enough.

Funder

Ministry of Science and Technology, Taiwan

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of WC ceramic particles on structures and properties of laser cladding Ni50-WC coatings;Journal of Materials Research and Technology;2023-09

2. Buckling instability and compressive deformation of Ni-Co-Cr medium-entropy alloy nanotubes;Modelling and Simulation in Materials Science and Engineering;2022-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3