A dislocation density-based crystal plasticity constitutive model: comparison of VPSC effective medium predictions with ρ-CP finite element predictions

Author:

Patra AnirbanORCID,Tomé Carlos NORCID

Abstract

Abstract This work presents a dislocation density-based crystal plasticity constitutive model for glide kinetics, strengthening and dislocation density evolution, implemented in the effective medium-based visco-plastic self consistent (VPSC) framework and the spatially resolved, ρ-CP crystal plasticity finite element framework. Additionally, a distribution of intragranular stresses is introduced in the VPSC framework, instead of the conventionally used mean value of grain stress for effective medium calculations. The ρ-CP model is first calibrated to predict the mechanical response of a bcc ferritic steel with an initial rolled texture. The same set of constitutive model parameters are then used in VPSC to predict the aggregate stress–strain response and total dislocation densities. For these VPSC simulations, the interaction parameter governing the interaction between the grain and the effective medium in the Eshelby inclusion formalism, and a scalar parameter representative of the distribution of intragranular stresses within a grain, are used to calibrate the VPSC predictions in order to match the predictions of the ρ-CP model. A parametric study is performed to understand the effect of these two parameters on the VPSC predictions. Further, simulations are also performed for a random untextured polycrystal to identify the corresponding VPSC simulation parameters for predicting a similar response as the ρ-CP model. The novelty of the work is in the same set of constitutive models and associated parameters have been implemented in VPSC and ρ-CP to predict similar aggregate stress–strain response and total dislocation densities. This finite element-calibrated effective medium crystal plasticity approach reduces the computational time by at least two orders of magnitude and represents an advance towards the development of multiscale crystal plasticity modeling tools.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3