An adaptive mesh scheme of the lattice spring model based on geometrical continuity

Author:

Ye BoORCID,Malthe-Sørenssen Anders,Jettestuen Espen

Abstract

Abstract An adaptive mesh scheme is introduced for the lattice spring model (LSM), where the original triangular cells are subdivided into a set of smaller triangular cells. The scheme is based on geometrical continuity at the heterogeneous mesh boundary, where the refined grid cells intersect the original cell edge. The LSM simulations on the refined grid show a superior computational efficiency to the uniform grid. Each subdivision reduces the original cell edges by a factor of two. The refinement procedure was recursively applied ten times before any marked loss in accuracy was observed. The accuracy of the adaptive model is on par with a regular grid approach. More specifically, the characteristics of fracture cavity are comparable with a uniform grid of the same mesh density as the smallest cells in the adaptive approach. The fracture criterion such as J-integral, the elastic energy of the grid and potential energy change due to fracture growth and strain loading agree well with the theory of a mode I fracture, which enables simulations of process such as sub-critical fracture with a wide dynamic range.

Funder

European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3