Shear behavior of SiCf/SiC interface under the thermo-chemo-mechanical influence and machine-learning-based interfacial microstructure design

Author:

Chen ShaohuaORCID,Xu NuoORCID

Abstract

Abstract The mechanical behavior of composite interface can be influenced by multiple factors, including the morphological roughness, the structure of coating interphase, and the temperature. Here, high-throughput molecular dynamics (MD) simulations are carried out to investigate the entangled effects of these factors on the shear stiffness G , the friction coefficient μ , the debonding strain ϵ d and stress τ d , of SiCf/SiC interface. We find that G is maximized by small roughness and high temperature for the optimal chemical bonding effect; μ and ϵ d are maximized by large roughness and low temperature, taking advantage of the mechanical interlocking effect while avoiding cusp softening; τ d demonstrates two local maxima which result from the competition between chemical bonding and mechanical interlocking. Provided the MD simulation results, a variational autoencoder (VAE) model is proposed to design the microstructure of SiCf/SiC interface for desired shear properties. According to the validations, the VAE-predicted interfacial configuration demonstrates highly similar shear properties to the reference one, justifying its potential for the microstructure design of composite interface. The results of this work can be employed to facilitate the development of SiCf/SiC composite by taking advantage of the synergistic effects of multiple designable factors.

Funder

Nanjing University of Aeronautics and Astronautics

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3