Evaluating the influence of deformation variables on dynamic recrystallization behavior using a crystal plasticity model

Author:

Chatterjee Ritam,Narayana Murty S V S,Alankar AlankarORCID

Abstract

Abstract The present study is an attempt to model dynamic recrystallization (DRX) in a single phase metal using a mean field crystal plasticity (MFCP) based approach. A new empirical equation is proposed to model nucleation, in which the nucleation rate is a function of microstructure and plasticity descriptors that are known to affect DRX behavior, such as the temperature, strain rate, grain fineness and stored energy. Grains undergo nucleation when their dislocation density exceeds a threshold value. Subsequently, new grains grow based on the difference in stored deformation energy with respect to the average value over all grains. The MFCP-DRX model is able to correctly predict trends for the flow stress, dislocation density evolution, grain size evolution and kinetics across a range of temperatures and strain rates for uniaxial compression. Transition of the flow stress from single to multiple peaks is observed with increasing temperature and decreasing strain rate, thus comparing well against known DRX trends. The evolutions of crystallographic texture during DRX in uniaxial compression and plane strain compression are compared against experimental observations. A sensitivity analysis is conducted to understand the effect of variables on nucleation and growth. The competition between nucleation and growth dominated deformation in different strain regimes is analyzed in detail across various temperatures and strain rates.

Funder

ISRO-Respond Cell, IIT Bombay

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Reference61 articles.

1. Introduction;Humphreys,2004

2. The deformation and ageing of mild steel: III discussion of results;Hall;Proc. Phys. Soc. B,1951

3. The cleavage strength of polycrystals;Petch;J. Iron Steel Inst.,1953

4. Current issues in recrystallization: a review;Doherty;Mater. Sci. Eng. A,1997

5. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions;Sakai;Prog. Mater. Sci.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3